Numerical metrics for complete intersection and Kreuzer–Skarke Calabi–Yau manifolds
نویسندگان
چکیده
Abstract We introduce neural networks (NNs) to compute numerical Ricci-flat Calabi–Yau (CY) metrics for complete intersection and Kreuzer–Skarke (KS) CY manifolds at any point in Kähler complex structure moduli space, the package cymetric which provides computation realizations of these techniques. In particular, we develop computationally realize methods point-sampling on manifolds. The training NNs is carried out subject a custom loss function. class fixed by adding component enforces slopes certain line bundles match with topological computations. Our are applied various manifolds, including quintic manifold, bi-cubic manifold KS Picard number two. show that volumes bundle can be reliably computed from resulting metrics. also apply our results an approximate Hermitian–Yang–Mills connection specific bi-cubic.
منابع مشابه
Maximal Unipotent Monodromy for Complete Intersection CY Manifolds
The computations that are suggested by String Theory in the B model requires the existence of degenerations of CY manifolds with maximum unipotent monodromy. In String Theory such a point in the moduli space is called a large radius limit (or large complex structure limit). In this paper we are going to construct one parameter families of n dimensional Calabi-Yau manifolds, which are complete i...
متن کاملHermitian-einstein Metrics for Vector Bundles on Complete Kähler Manifolds
In this paper, we prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete Kähler manifolds which include Hermitian symmetric spaces of noncompact type without Euclidean factor, strictly pseudoconvex domains with Bergman metrics and the universal cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem at infinity for the Hermi...
متن کاملGeodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds
In this work it is shown that a necessary condition for the completeness of the geodesics of left invariant pseudo-Riemannian metrics on Lie groups is also sufficient in the case of 3-dimensional unimodular Lie groups, and not sufficient for 3-dimensional non unimodular Lie groups. As a consequence it is possible to identify, amongst the compact locally homogeneous Lorentzian 3-manifolds with n...
متن کاملComplete intersection for equivariant models
Phylogenetic varieties related to equivariant substitution models have been studied largely in the last years. One of the main objectives has been finding a set of generators of the ideal of these varieties, but this has not yet been achieved in some cases (for example, for the general Markov model this involves the open “salmon conjecture”, see [2]) and it is not clear how to use all generator...
متن کاملToric complete intersection codes
In this paper we construct evaluation codes on zero-dimensional complete intersections in toric varieties and give lower bounds for their minimum distance. This generalizes the results of Gold–Little–Schenck and Ballico–Fontanari who considered evaluation codes on complete intersections in the projective space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine learning: science and technology
سال: 2022
ISSN: ['2632-2153']
DOI: https://doi.org/10.1088/2632-2153/ac8e4e